Обратимся к табл. 4.6 и выпишем ряд десятичных чисел, которые равны "круглым" двоичным числам. В этот ряд входят следующие десятичные числа: "2", "4", "8", "16", "32", "64", "128", "256", "512" и, наконец, сакраментальное "1024". Все эти числа представляют ряд последовательных степеней числа "2". Каждое из названных чисел чрезвычайно активно используется в компьютерных технологиях. Читатель, видимо, убеждался в этом не один раз.
Мы оперируем каким-либо двоичным числом, а любое двоичное число — это совокупность битов, т. е. "1" и "О". Отсюда получается, что каждый бит — это один разряд или одна позиция в двоичном числе.
Замечание
Надеемся, что вы еще не забыли о позиционном принципе записи чисел в любых математических системах счисления (значение цифр, количество которых ограничено, зависит от положения в числе, от ее позиции).
В данный момент мы делаем шаг в сторону абстрагирования от конкретных значений цифр и начинаем считать только количество знакомест (позиций), которое в математике принято называть "разрядом", а совокупность разрядов (знакомест) — "разрядностью".
Определение
Разряд в арифметике — это место, занимаемое цифрой при записи числа. Например, в десятичной системе счисления цифры первого разряда — это единицы, второго разряда — десятки и т. д.
Но арифметические законы, которые кажутся привычными в десятичной системе счисления, все без исключения действительны и для двоичной системы счисления. Двоичные числа также можно складывать, вычитать, перемножать и делить с использованием тех же приемов школьного курса арифметики. Отличие заключается только в том, что используются всего две цифры.
Кроме того, как мы уже выяснили, в двоичной системе счисления каждый разряд — это бит и его значение зависит от позиции и равно соответствующей степени числа "2".
Определение
Разрядность двоичного числа — это количество знакомест (разрядов) или количество битов, заранее отведенных для записи числа.