Иллюстрированный самоучитель по Digital Graphics



         

Запись целых чисел в двоичной системе счисления


Настало время разобраться, каким же образом можно записывать любые целые числа с помощью двоичной системы счисления, т. е. с помощью всего двух цифр "0" и "1".

Замечание

Разумеется, что записывать можно не только целые, но и дробные, а также любые другие числа, однако это выходит за рамки, необходимые для того, чтобы в конечном счете понять, как происходит кодирование и обработка любой интересующей нас информации, в частности изображений и цвета. Пока же мы не выходим за рамки арифметики, поэтому — терпение: мы уже на пути к этому.

Исходя из этой задачи, попробуем составить таблицу чисел, которые "состоят" из цифр "0" и "1".

Замечание

Как эту задачу можно определить "обычными" словами (наука наукой, однако за скучными, точными фразами надо уметь находить обычный план изложения)? То, что мы сказали ("кодировать в двоичной системе счисления"), на самом деле означает — "как с помощью всего двух цифр написать любое целое число". Можно также сформулировать нашу задачу фразой "как преобразовать десятичные числа в двоичные".

Тогда давайте, рассуждая, заполнять строки таблицы, у которой в левом столбце будут располагаться привычные нам десятичные числа, а в правом — их эквивалент в двоичной системе счисления (табл. 4.2).

С нуля начинается числовая ось натуральных целых чисел. Последующие целые числа получаются с помощью последовательного прибавления единицы к предыдущему числу.

Итак, число "ноль" в десятичной и двоичной системах счисления совпадает и обозначается одной и той же цифрой "О".

Далее переходим к единице, которая получается прибавлением единицы к нулю. В двоичной системе счисления, как и в десятичной, используется также одна и та же цифра "1".

Замечание

Еще раз напомним, что "цифра" и "число" не всегда совпадают. Цифра — это просто знак, количество цифр ограничено. Число — это математическая категория количества, чисел бесконечное множество.




Содержание  Назад  Вперед