Иллюстрированный самоучитель по Digital Graphics

       

Восьмеричная система счисления


Если мы обращаемся к восьмеричной системе счисления, то это означает, что можно использовать гораздо больше цифр, чем это принято в двоичной, но меньше, чем в десятичной, а именно можно оперировать восемью цифрами: 0, 1, 2, 3, 4, 5, 6, 7 — и не более.

Логика конвертирования десятичных чисел в восьмеричные (кодирование в восьмеричную систему счисления) совершенно идентична приведенной выше.

Более подробная информация — в разд. "Запись целых чисел в двоичной системе счисления" данной главы.

Действительно, в определенный момент цифры заканчиваются (наступает "кризис переходного периода").

Десятичное число "8" становится восьмеричным числом "10" ("восьмеричной десяткой"). Число "9" будет восьмеричным числом "11", число "10" — восьмеричным числом "12". И так далее до десятичного числа "15", которое в восьмеричном виде равно числу "17". А дальше?

Цифры снова кончились. Как будет представлено десятичное число "16" в восьмеричной системе счисления?

178 + 1 = ...,

но сумма "78 + 1" равняется "10" в восьмеричной системе счисления, а, следовательно, восьмеричный "десяток" необходимо складывать с "десятком",

уже имеющимся, т. е. получается сумма, присутствующая в восьмеричной системе: "1 + 1 = 2". В результате получается, что

178 + 1 = 208.

Дальше — восьмеричное число "21" и т. п., вплоть до восьмеричного числа "77". И только после этого будет восьмеричная "сотня".

Представим эту информацию в виде таблицы (табл. 4.4).

Таблица 4.4. Соответствие десятичных и восьмеричных чисел



Десятичные числа

Восьмеричные числа

Десятичные числа

Восьмеричные числа

0-7

0-7

25-63

31-77

8

10

64

100

9-15

11-17

128

200

16

20

256

400

17-23

21-27

512

1000

24

30

1024

2000

Но даже такие числа все-таки мало экономны, по крайней мере, их разрядность не уступает десятичной системе, поэтому в компьютерных технологиях применяется еще одна система счисления, которая называется шестна-дцатеричной.



Содержание раздела