разбивать линии на достаточно мелкие (короткие) фрагменты;
выбрать наиболее простую формулу (функцию) для их описания.
Самой простой функцией, естественно, является линейная зависимость, с помощью которой описывается прямая линия — кратчайшее расстояние между двумя точками, лежащими на плоскости.
Разбивая линейный рисунок на достаточно мелкие элементы дискретизации и соединяя полученные точки дискретизации прямыми, можно с помощью исчислимого (конечного) количества этих прямых представить любой линейный объект и любую сложную кривую.
Самым главным достоинством такой технологии является, естественно, простота; для каждой точки достаточно всего двух чисел, определяющих координаты этих точек. Таким образом, огромную кривую можно описать всего-навсего сотней пар чисел.
Однако указанная простота является причиной серьезных недостатков.
Объекты, составленные только из прямолинейных сегментов, лишаются возможности произвольного масштабирования. Пока отрезки достаточно мелкие, они не создают впечатления угловатости, но при значительном коэффициенте увеличения углы становятся очевидными.
Форма объекта, аппроксимированного линейными отрезками, может изменяться, например при вращении.
Для совершенно достоверной аппроксимации формы объекта, когда окружность выглядит как окружность, а не как многоугольник, потребуются десятки тысяч линейных сегментов.
Замечание
Такой принцип по-прежнему используется, например в системах, связанных с режущими устройствами.
Указанные недостатки заставляют искать другие способы описания формы объектов и использовать более сложные кривые, в частности кривые более высоких степеней (второй, третьей и т. д.).
Пример-метафора
Упрощенно говоря, задача формулируется так: найти некий набор заготовок, каких-нибудь бесконечно гибких проволочек, из которых мы единообразным способом с помощью одной и той же формулы получим самые разные формы.
А уже из этих форм составим цепочку, т. е. последовательно свяжем их друг с другом и получим любой произвольный объект.
Для того чтобы перейти к таким кривым, необходимо вспомнить об исторических корнях.